
 

 

 

Abstract—Robotic sound localization has traditionally been 

restricted to either on-robot microphone arrays or embedded 

microphones in aware environments, each of which have 

limitations due to their static configurations. This work 

overcomes the static configuration problems by using visual 

localization to track multiple wireless microphones in the 

environment with enough accuracy to combine their auditory 

streams in a traditional localization algorithm. In this manner, 

microphones can move or be moved about the environment, and 

still be combined with existing on-robot microphones to extend 

array baselines and effective listening ranges without having to 

re-measure inter-microphone distances. 

I. INTRODUCTION 

he design of a microphone array has a significant impact 

on the mathematics of sound source localization. Arrays, 

for instance, are commonly designed to emphasize the region 

directly in front of the robot limiting noise from the sides 

when the signals are combined together. Microphone 

placements within the array can lead to: superdirective 

configurations, amplifying conversations at a distance; or be 

generic in shape, but be prepared with lots of microphones to 

listen to any possible approach direction [1].  They can 

emphasize angular measurements or be spread across a room 

to localize a source in 2D [2]. In general, the shape of the 

array should be designed for the application, so as to 

effectively suppress ambient noise while amplifying the 

target. In robotics, however, the problem with a static 

mounting is that the microphones do not move relative to 

each other. The robot base can move, but the microphones 

stay in a rigid, well measured mounting. Robot microphone 

arrays, therefore, are designed to overcome worst case 

configurations for a single application, or, worse yet, they 

are simply attached to the robot/environment wherever space 

permits. This is not conducive to effective noise cancellation, 

either in sound source localization or auditory streaming 

applications. Instead, the robot needs to be able to 

reconfigure its array configuration dynamically in response 
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to changing tasks and environmental conditions. The goal of 

this work is to remove that limitation of a static array 

configuration, freeing up microphones to be moved about as 

needed either by hand or by other robots.  

The reason for traditionally mounting microphones in 

rigid configurations, as opposed to dynamically adapting the 

array design, is the effects of small amounts of error on 

localization performance. In a 2 element array, with 

microphones spaced 0.3-m apart, a 1-cm error in relative 

microphone position can mean a 14-deg error in sound 

localization. With triangulation based methods for localizing 

sources in 2- or 3- dimensions, this angular error is then 

compounded by the distance from the array. A static-

mounted array, therefore, is accurately measured and rigidly 

attached to a robot or the room to maintain measurement 

precision or repeatability. Whether the microphone streams 

are being combined through beamforming, generalized cross 

correlation, or independent components analysis, the precise 

position of each microphone relative to the others is 

required. This work does not violate this principal. Using a 

single on-robot camera, a robot localizes each microphone 

individually from an attached fiducial. As will be discussed 

in greater depth in section 3, the AR toolkit [3], when used 

with a modified camera image segmentation process, allows 

the robot to identify environmental microphone positions 

accurately enough to identify sound source positions in 3D. 

These distributed microphones can then be combined at the 

signal-level (i.e. using generalized cross-correlation to 

identify time-delay on arrival) with any on-robot 

microphones to change the array configuration, and improve 

the quality of sound localization. 

II. RELATED WORK 

Robot mounted microphone arrays have traditionally been 

subject to two classic limitations. First, on-robot 

microphones are located in close physical proximity to 

sources of robot ego-noise (e.g. motors, fans, wheels, etc.), 

which mask the signals of interest. Second, limited mounting 

space on top of or around a physical robot platform restricts 

the potential accuracy of sound source localization 

algorithms because of small inter-microphone distances. A 

small array, in general, can find the angle to a sound source, 

but not the distance [4]. Solutions to these problems tend to 

be application specific. 

For handling robot ego-noise, as well as general 

environmental sources, the most common solution is targeted 
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filtering. Speech filters, in particular, have received a lot of 

attention in the field of human-robot interaction for foveating 

a robot towards a target [5] in 1D. Valin uses specially 

designed filters for separating out speech signals from 

ambient and robot noise [1] to identify the angle (yaw, pitch) 

to a speech source and do auditory streaming. Also, filters 

modeling the precedence effect, a biological phenomena that 

emphasizes early sounds over reverberations, can track time-

varying signals such as speech or music [6]. 

If a source position is necessary, however, and not just its 

angle, then one robotic solution is to move the physical array 

and sample in multiple locations. Angular estimates from 

each sample location, when combined together, triangulate 

upon one or more targets in 3D. Combining the 

measurements effectively becomes the difficult part, with 

both evidence grids [4] and the RANSAC [7] algorithm 

having been used for this purpose. 

When the microphone array does not need to remain on 

the robot, then a good alternative solution in some cases is to 

mount microphones throughout the environment. Aware 

environments research has demonstrated this in home 

environments to keep track of their occupants [8]. Nakadai et 

al [2] demonstrated this successfully with 2D localization of 

a speaker in a single room, ultimately integrating both local 

measurements from an on-robot array with the room 

mounted array using a particle filter. The auditory streams 

from the robot measurements, however, were not compared 

directly to the room mounted microphones due to the lack of 

precise inter-microphone spacing. In general, however, the 

room mounted array solution suffers from deployment 

problems. Relatively rapid re-calibration techniques using 

high-frequency pulses [10, 11] are effective for localizing 

disparate microphones, but have reduced accuracy in the 

presence of obstacles. Furthermore, hardware setup may be 

prohibitive. Wires need to be strung throughout the room or 

built into the environment, or wireless systems need to 

manage batteries, base stations and interference from other 

wireless type devices. All of which limits deployment of 

large room mounted arrays to arbitrary environments. 

III. DYNAMIC MICROPHONE ARRAY DESIGN 

In contrast to previous work mixing multiple microphone 

arrays together [2], this work integrates microphones 

together at the signal level. Combining data at the signal 

level means that sound localization probabilities are 

calculated for every microphone pair instead of each separate 

microphone array. Therefore, each detected microphone in 

the environment, when combined with on-robot static array, 

doubles the number of total sound localization estimates. 

Furthermore, because environmental microphones are 

generally located further away from the robot, the baseline of 

the array is extended tremendously, improving overall 

accuracy. 

The system we have developed to test our dynamic array 

is shown in Figure 1. An iRobot B21r is equipped with a 

single Point Gray firefly camera for localizing fiducials 

attached to wireless microphones. The SR3000 time of flight 

camera seen in Figure 1 is not currently used except as a 

visualization aid. The wireless microphones detected by the 

robot are continuously streaming to 2 variable frequency 

base-stations mounted on the robot. The signals of both the 2 

wireless base stations and 2 robot-mounted microphones are 

amplified with battery powered preamps and then sampled 

using an 8 channel PCMCIA A/D converter. Currently, all 

microphone streams are continuously sampled by the robot. 

Stream inclusion in sound localization is then guided by 

software. In the future, however, we hope to remove this 

need for a base station per wireless microphone by either 

synchronizing streams locally and then transmitting via 

traditional wireless network [10], or dynamically switching 

between wireless frequencies depending upon the set of 

visible fiducials. 

The remainder of this section describes the sensing 

components of this system in more detail. Specifically, it 

covers the modifications necessary for accurate visual 

localization of the microphones, and the algorithms used to 

localize sound sources from a dynamic microphone array. 

A. Visual Microphone Localization 

Dynamic microphone localization is achieved through 

rigidly affixing fiducials to the wireless microphones.  The 

fiducials we use are developed by the ArToolkit [3] which 

can recover fiducial positions in real time.  When using the 

ArToolkit in a real time signal processing task, the system 

must be calibrated and parametrically optimized before 

accurate position estimates can be recovered.  We will 

review calibration of ArToolkit parameters first, followed by 

camera calibration techniques and testing results.   

 The ArToolKit provides a system for generating and 

tracking planar markers.  The system is based on the 

 
Figure 1. Wireless microphones (right) are rigidly attached to 

fiducials. The B21r robot uses its onboard camera to localize these 

microphones and combine their signals with 2 overhead microphones. 
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capability of recognizing black squares printed on white 

backgrounds commonly known as fiducials.  To recognize 

the fiducials, a segmentation algorithm is employed that 

labels black pixels as part of the square and white pixels as 

part of the background.  For pixels containing only a white 

background or black square, the labeling is straightforward.  

Pixels on the border of the square, containing portions of 

both black and white colors, however, are often highly 

ambiguous and result in incorrect estimation of a fiducial’s 

boundary in an image.  Two factors that contribute to 

boundary ambiguity are the use of a Bayer pixel pattern and 

image blur.  The Bayer pixel pattern utilizes an uneven 

spacing of red, green and blue pixels used in most modern 

cameras.  The process of generating a color image requires 

demosaicing the pixel pattern to generate a full resolution 

image.  The image interpolation necessary for demosaicing 

introduces blurring about edges of image features.  In 

addition to blurring caused by the demosaicing process, 

blurring occurs due to lens/image plane effects. 

The end results of image blur is the need to parametrically 

set the image segmentation threshold in the ArToolKit.  In 

work presented here, the threshold boundary was modified 

until the segmentation boundary for our fiducial coincided 

with the actual boundary of the fiducial in the image.  

Without setting the segmentation threshold, the ArToolKit 

consistently underestimated fiducial size, resulting in 

underestimated distances between camera and fiducial.   

Once the segmentation parameters were set, internal 

calibration of focal length and distortion was performed.  To 

overcome image distortion, the ArToolKit’s distortion 

calibration tools were used to solve for the center of 

projection and image distortion characteristics.  For 

recovering the camera’s focal length, we used the fiducials 

themselves.  Fiducials were placed in known locations and 

then the focal length was modified until the distances 

between fiducial locations matched the actual theoretical 

distances between the fiducials.  By using the fiducials to 

solve for the focal length, the internal calibration parameters 

of the camera were determined while further minimizing any 

effects of the aforementioned segmentation parameters. 

Once the camera was calibrated, we tested fiducial 

localization accuracy by comparing distances between 

fiducials placed at known locations.  Two tests were 

performed.  First, we evaluated inter-fiducial location 

accuracy in regard to translations away from the camera with 

error metrics shown in Figure 2.  These results show a 

greater error for greater distances between fiducials.  This 

demonstrates that fiducials further away from the camera, 

necessary for producing larger inter-fiducial distances, 

caused the inter-fiducial distance to be under estimated.  This 

deterministic underestimation can be partially attributed to 

inaccurate focal length calibration.  With due diligence, the 

decrease in fiducial accuracy with respect to range could be 

mitigated by additional modification to the camera focal 

length parameters. However, the projected mean error for a 

2-m inter-microphone distance was still <1-cm, which would 

produce a less than 5 degree error in sound localization. 

The second test was a horizontal translation performed at 

a distance of 1.5 meters.  Without a scale change, the fiducial 

system performs more accurately in the translation test 

producing a low error value.  Results for both horizontal and 

depth translation produced low error and were within the 

accuracy needed to perform sound localization. 

B. TDOA-Based Sound Source Localization 

Time difference on arrival (TDOA) based sound 

localization uses the fact that the speed of sound is finite and 

relatively slow compared to light. If the time difference 

between a sound arriving at each microphone is identifiable, 

then locations surrounding the array which might have made 

that sound can be extracted from the problem geometry. As 

mentioned previously, practical limitations such as 

ambient/robot noise and inter-microphone distances may 

restrict accuracy in all dimensions, but, particularly, range. 

To evaluate our localization efforts, this work uses the 

generalized cross correlation algorithm to identify the actual 

time delay, organizing the results in a spatial likelihood [11]. 

Measurements are then combined over time and different 

physical sampling locations using an auditory evidence grid. 

Except for an adaptation to handle larger physical spaces, 

this 3D localization algorithm is used as described by 

Martinson and Schultz [4]. The remainder of this section 

describes: (1) a theoretical analysis of acceptable inter-

microphone visual localization error, (2) the details of how 

we combined measurements together to localize a sound 

source together, and (3) how to reduce the computational 

load of 3D spatial likelihoods for real-time operation. 

1) Theoretical Error Analysis 

An analysis of the problem geometry allows us to identify 

theoretically acceptable inter-microphone localization error. 

Assuming that all of the error is split evenly between the two 

 
Figure 2. Measurement error vs. inter-fiducial distance for: (Top) 

translations away from the camera, (Bottom) horizontal translations 
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microphones along the array axis, and that 5 degrees of 

sound localization error is an acceptable maximum, Figure 3 

plots the maximum acceptable position error for varying 

angles of incidence. As the sound source angle of incidence 

from array normal increases, the acceptable inter-

microphone position error decreases significantly. For small 

angles and large baselines, microphone localization error can 

be much worse than that of our existing visual system. But 

for sound sources located along the array axis (i.e. 90º), less 

than 1-cm of error is important for accurate localization.   

2) Localizing a Sound Source in 3D 

Spatial likelihoods are a sound localization approach 

based on maximum likelihood that uses a weighted cross-

correlation algorithm to estimate the relative energy 

associated with all possible source locations.  The idea is that 

the resulting cross-correlation value, adjusted for the 

predicted time difference on arrival, will be highest for those 

position/time differences corresponding most closely with 

the true value.  The generalized cross correlation (GCC) 

value is determined separately for each microphone pair, and 

then summed across all microphone pairs for every position: 
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where (Ma) is the Fourier transform of the signal received by 

microphone (a), 
bM  is the complex conjugate of (Mb),  (ω) 

is the frequency in [rad/s], and (W) is a frequency dependant 

weighting function called the phase transform (PHAT):
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To localize a sound source, each measurement collected is 

scaled to [0.01,0.99] to form a likelihood. Then, each cell in 

a global auditory evidence grid is updated using log-odds 

notation to reflect this new measurement. This effectively 

stores measurements over time, and enables triangulation 

from multiple measurement positions to localize a sound 

source in 2 or 3 dimensions.  
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In these equations, p(SSx,y|z
t
,s

t
) is the probability of 

occupancy given all evidence (sensor measurements z, and 

robot pose s) available at time (t), and p(SSx,y|zt,st) is the 

inverse sensor model, or probability that a single grid cell 

contains the sound source based on a single measurement. 

To extract the most likely sound source position from the 

resulting evidence grid, cells whose value are less than 90% 

of maximum are discarded, and the remaining cells are 

clustered together. For each cluster c, the combined log-

likelihood Lc and the weighted centroid μc are identified. The 

centroid of the cluster with the greatest Lc is the most likely 

sound source position. Other clusters may indicate other 

sound sources, depending upon their combined likelihood.  

3) Interpolation for Real-Time Operation 

Although spatial likelihoods are determinable for large 

spaces in 2D at run-time (e.g. 100-m
2
, 0.1-m stepSize), the 

expansion to 3D causes computational difficulties for real-

time operation. Previous work using evidence grids avoided 

this limitation because all microphones were closely located 

in space, and, therefore, spatial likelihoods were determined 

over a limited region surrounding the robot (3-m from the 

array centroid). By allowing microphones to move as much 

as 3-m from the robot, however, the space over which spatial 

likelihoods need to be determined expands substantially.  

The solution to this problem is to interpolate across 

calculated time-delays, rather than recalculate the GCC 

energy for every position in the spatial likelihood. At its 

core, the spatial likelihood function is a 3D representation of 

the underlying energy vs time-delay function. For each 3D 

position, a 1D time-delay is calculated for all microphone 

pairs, which, in turn, are used with GCC to identify a 

combined correlation energy. The range of potential time-

delays is defined by the distance between microphones (d) 

and the speech of sound (cs): 

 ss cdcddelay ,  

By regularly sampling time-delay range, and calculating 

the corresponding energy (see Figure 4), we can then use 

interpolation to convert the time-delays associated with each 

3D position to the corresponding energy without calculating 

the GCC energy for all position. For an area of 6x6x3-m
3
, 

this means a computational reduction from 1.08x10
8
 GCC 

 
Figure 4. Cross correlation energy is dependent only on time-delay. 

Interpolation enables faster construction of 3D spatial likelihoods. 

 
Figure 3. Maximum acceptable inter-microphone localization 

error given an allowable 5 degree sound localization error. The 

different lines represent varying angles of incidence away 

from the array normal. 
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calculations to 2000 (the number of delays we use per 

sample). This makes the spatial likelihood computationally 

feasible for run-time calculations over larger areas and 

smaller grid cell sizes. 

IV. SYSTEM EVALUATION 

The dynamically reconfigurable microphone array was 

evaluated in 2 series of tests. In the first, 2 wireless 

microphones were used by themselves to localize music 

sources in the environment from a number of different 

positions. In the second tests, the 2 wireless microphones 

were combined with a rigid binaural array on top of the b21r 

robot. The robot then self-discovered wireless microphone 

positions with which to augment its onboard array. 

The testing environment was a mobile robotics laboratory. 

Ventilation, transportation, and speech noise were common 

during testing. The sound source evaluated was a computer 

speaker playing an fm radio broadcast at ~65dBA. Samples 

were collected from both the wireless and static microphone 

arrays at 11025 hz in 2048 sample packets. All known 

microphone positions were recorded for each packet. 

Samples for which less than 2 microphone positions were 

known were discarded. 

A. 2 Wireless Microphones 

To evaluate the performance of the visual localization 

method, the first test uses just wireless microphones. The 

accuracy of the sound source localization method is directly 

related to the accuracy of the microphone localization. 

Therefore, in this test, the two wireless microphones were 

moved by hand to different pair position configurations. A 

total of 8 trials tracking the computer speaker were 

completed, with 5-9 different pair positions recorded per 

trial. The difference in the number of pair positions was due 

to the visibility of the microphones. When one microphone 

was poorly visible to the camera, audio was not recorded. 

To analyze performance, 2-sec of audio were sampled 

randomly from each position and an evidence grid built. For 

all combinations of 3-5 positions, a combined evidence grid 

was constructed and a sound source identified. For [3,4,5] 

mic-pair positions, a total of [142,132,85] grids were 

constructed and sources extracted across all 8 trials. Figure 5 

summarizes the combined results. 

As should be expected, localization accuracy increases 

with the number of positions. With data from only 3 

positions, a classifier with a log-likelihood threshold set for 

600 would accept 60% of all sound source positions and 

have a mean error of 0.32-m. Using 4 positions increases 

performance with the same threshold to 74% and 0.26-m. 5 

positions means 82% and 0.24-m. The last graph in Figure 5 

shows an ROC-curve, where a positive classification is 

determined to be anything within 8
3
-in of the target. 8” was 

selected because the speaker is ~8” tall. The ROC curve 

shows that classification performance for only 3 positions 

has a maximum positive classification rate of 54%. Using 

more positions raises that maximum to 76% and 82% for 4 

and 5 positions respectively. 

To compare these results better to other localization work, 

Table 1 compares the mean error between 2D and 3D 

localization for log-likelihood thresholds that accept 80% of 

the localized sound sources. 
Table 1. Mean-error comparison between 2D and 3D localization for an 

80% acceptance rate. 

# of Mic Positions Mean Error(2D) Mean Error (3D) 

3 0.26m 0.36m 

4 0.20m 0.27m 

5 0.18m 0.24m 

B. 2 Static + 2 Wireless 

Using only a standard computer sound card, a robot is 

limited to binaural inputs. Even when using wireless 

microphones, the audio signal must ultimately be sampled 

and recorded by the computer using an A/D converter. When 

the converter has more channels, however, the robot can mix 

onboard sensing with wireless microphones. In this second 

set of trials, the dynamic nature of the microphone array is 

demonstrated by having the robot autonomously discover 

microphones in the environment through robotic movement. 

Discovered microphones are then mixed with 2 onboard 

microphones to better localize a stationary sound source. 

 
Figure 5. Localization performance increases with the number of stops. 

(Top) Classification rate is the percentage of samples accepted as valid 

sound sources. (Middle) Mean resulting error examines distance to 

ground truth for all sound source positions whose combined log-

likelihood exceeds the threshold. (Bottom) Percentage of sources 

detected within 83-in of ground truth vs. sources outside 83-in. 
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Robot ego-noise measures 51dBA at the stationary 

microphones and ~49dBA ambient. 

In these trials, two wireless microphones were placed 

within 3-m of the robot at arbitrary locations. The robot then 

rotated in place until it found each of the microphones. 10 

samples were collected at each of 4 locations: twice without 

any visible microphones, and twice with at least one wireless 

microphone visible. A total of 10 trials were completed in 

this fashion. The wireless microphones were moved to new 

locations between each trial. 

Using the self-discovered wireless microphone signals, the 

robot successfully localized the sound source in 3D with an 

average error of 0.25m. Using only the two onboard 

microphones, this average error increases to 0.53m. Figure 6 

demonstrates why. With only the two microphones mounted 

on the robot, only an angle is reliably extracted by rotating 

the platform. By extending the array baseline, however, the 

sound source position becomes identifiable. 

V. CONCLUSION 

The goal of this initial work in dynamically reconfigurable 

microphone arrays has been to demonstrate their feasibility, 

and evaluate their accuracy. This we accomplished through 

two demonstrations, one with two wireless microphones 

moved by hand through an environment, and the other by 

having a robot discover wireless microphones and use them 

to augment its onboard microphone array. The accuracy of 

the combined sound localization system is within 0.3-m for 

3D spatial coordinates, which is very good for a variety of 

sound localization type applications including human-robot 

interaction and security robotics. 

The next step in this work is to apply it to robotic teams. 

With only two microphones, 2 or 3D source localization 

requires sampling from many different positions. Placing the 

sensors on robots and localizing them dynamically makes 

this strategy feasible. Unfortunately, localizing through 

movement is not effective for short term noise sources that 

disappear before robots have moved. This limitation is due 

to the shape of the array and the number of microphones, not 

the basic sound localization theory. By adding more 

microphones and separating them in space, localization of 

short-term sources becomes possible without additional 

sample positions. Robotic teams are interesting here, because 

making the individual nodes in this network mobile enables 

autonomous microphone repositioning for short duration 

source detection in response to user specified observation 

regions. Furthermore, it also enables dynamic 

reconfiguration of the network in response to changing 

environmental conditions. If a new ambient noise source 

begins to disrupt reception in one area, then one or more 

microphones can shift locations around the problem source 

to maximize signal-to-noise ratios in other areas. 
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Figure 6. With only the onboard static array, rotating the 

robot discovers direction. Using the dynamic array with 

wireless microphones, a position is identified. 
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